Corners Limited

is the proud sponsor of the

2014 ASAG Workshops

Avian Scientific Advisory Group

Flight Restriction: PVA as a quantitative approach to examine implications for population sustainability

Colleen Lynch

Curator of Birds, Riverbanks Zoo & Garden Consulting Population Biologist, AZA PMC

Flight restriction methods present a continuum...

- Reversibility
- Effort
- Maintenance
- Opinions

Collection Planning

- Can I pinion this species?
 - Non-reversible/permanent
- Can I manage feather clipping this species?
 - Reversible/temporary
- Can I provide enclosed housing for this species?

If I can't answer YES to at least one of these questions, I probably cannot participate in the management of this species

Collection Planning

- How is the population impacted if my zoo cannot participate in its management?
- The carrying capacity, or target size, will be reduced...

the population will be smaller.

The question of flight restriction...

- Discussions of flight restriction are often QUALITATIVE, based on "gut feeling", personal experience, or emotion
- Discussions of flight restriction are **not** often QUANTITATIVE, based on data
- My Goal
 - IS NOT to discuss the ethics of various flight restriction practices
 - IS to introduce quantitative methods to the discussion

Adding data to the discussion

- Data that should be considered
 - Behavioral
 - Psychological
 - Veterinary
 - Logistical
 - Legal
 - Population biology
 - Vital rates fecundity & mortality
 - Target population size

Adding data to the discussion

- Data that should be considered
 - Behavioral
 - Psychological
 - Veterinary
 - Logistical
 - Legal
 - Population biology
 - Vital rates fecundity & mortality
 - Target population size

Population Viability Analysis

- Iterative stochastic individual-based computer model that predicts the likely future status of a population
- includes demographic, genetic and management processes that affect captive populations
- based on a population's history (studbook data) and the science of small population management

Population Viability Analysis

Model Assumptions

- Current target size includes spaces for flighted and non-flighted individuals
- Limiting the options available for flight restriction will result in a concomitant reduction in available space

Model Hypothesis

- Populations having a lower target size may exhibit reduced sustainability via
 - Increased extinction risk
 - Reduced gene diversity retention
 - Reduced population size

Model Structure

- Species to be modeled
 - Crane
 - Flamingo
 - Goose
 - Duck

Baseline Model Structure

- Baseline Model predicts population future under current management conditions
 - Input
 - Genetic structure of living population
 - Demographic rates derived from studbook
 - Output
 - Extinction Risk at 100 years from present
 - GD retained at 100 years from present
 - Population size at 100 years from present

Scenario Model Structure

- Scenario Model predicts population future under varying management conditions
 - Input
 - Genetic structure of living population
 - Demographic rates derived from studbook
 - Reduced target size
 - 90%, 80%, 60%
 - Output
 - Extinction Risk at 100 years from present
 - GD retained at 100 years from present
 - Population size at 100 years from present

Misc. Model Rules

- Unknown pedigree
 - No pairing of animals having Pedigree < 50% known
- Inbreeding
 - No pairing of animals with F ≥ 25%

Model Details

• For the 5 of you who care...

Species Biology		Model Options	
Variable	Value	Calculate Genetics	Γ
Number of Males per Breeding Group	1	Calculate Age Pyramids	ŀ
Number of Females per Breeding Group	1	Calculate Age Fyraillius	
Number of Years between Pairing	1		l
Model Settings			
Variable	Value	Circulate Carackia Managara	ł
Number of Years	100	Simulate Genetic Management	Į
Number of Iterations	1000		
Extinction Threshold	0	Simulate Catastrophe Events	
GD Threshold	0		
3D Threshold	U		

Model Results -

- Populations are not negatively impacted by REMOVING flight restriction IF Baseline = Scenario output
 - Acceptable risk of extinction
 - ≤ 10% extinction risk
 - Gene Diversity at 100 Years
 - > 90% GD
 - Population Size at 100 years
 - N = Kt

Crane background

- Population is currently
 - Below TAG recommended target size 67/90
 - Current GD = 96%
 - Projected lambda = 0.98

Crane Results - N (Kt = 90)

Crane Results - GD

Crane Results - Extinction Risk

- Risk
 - High at 60%Kt
 - Acceptable in other scenarios
- Time
 - 80+ years

Flamingo background

- Population is currently
 - Below TAG recommended target size 585/600
 - Current GD = 99%
 - Projected lambda = 0.99

Flamingo Results – N (Kt = 600)

Flamingo Results - GD

Flam Results - Extinction Risk

- Risk
 - Zero for all scenarios
- Time
 - n/a

Goose background

- Population is currently
 - Below TAG recommended target size 67/100
 - Current GD = unknown %
 - Projected lambda = 0.97

Goose Results - N (Kt = 100)

Goose results - GD

- Too much unknown pedigree to model...
 - Needs an analytical studbook with data conventions supported by ZooRisk

Goose Results - Extinction Risk

- Risk
 - High for all scenarios
- Time
 - 60-70 years

Duck background

- Population is currently
 - Below TAG recommended target size 73/150
 - Current GD = 87%
 - Projected lambda = 0.91

Duck Results - N (Kt = 150)

Duck Results - GD

Duck Results - Extinction Risk

- Risk
 - Extinction is almost certain in all scenarios
- Time
 - 40-50 years

Results - Patterns

- NS² "no ---- sherlock"
 - Result trends are intuitive
 - But result values are actually measurable
 - Relative impacts of alternative management can be predicted
- Most of our populations are
 - Currently not achieving their TAG Recommended Target Size
 - Currently projected to decline rather than grow
 - Currently projected to not meet genetic goals (90%GD)
 - welfare issue may arise as inbreeding accumulates
- Any actions that further reduce resources, including space, should be carefully considered

Other questions to be modeled

- These models examined change in TARGET SIZE
- Other models could be built to incorporate examinations of potential changes in individual fitness
 - FECUNDITY
 - What if a flight restriction method reduces the likelihood of successful reproduction?
 - MORTALITY
 - What if a method of flight restriction directly or indirectly influences mortality?

Population Viability Analysis

- The models presented are simple examples
 - But they demonstrate that results vary among species
- More accurate/complex models should be constructed in cooperation with species managers to ensure accurate and useful outcomes
 - Species were not identified (but actual studbooks were used)
 - Thanks studbook keepers for sharing your data!
- PVA provides a quantitative method to be included in discussions of flight restriction

Corners Limited

is the proud sponsor of the

2014 ASAG Workshops

Avian Scientific Advisory Group

Stork background

- Population is currently
 - Below TAG recommended target size
 91/100
 - Current GD = 87%
 - Projected lambda = 0.95

Stork results - N (Kt=100)

Stork Results - GD

Stork Results - Extinction Risk

- Risk
 - High at 60%Kt
 - Acceptable in other scenarios
- Time
 - 80+ years

